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Transport properties of disordered electron system can be characterized by the conductance, Lyapunov
exponent, or level spacing. Two additional parameters, K11 and � were introduced recently which measure the
nonhomogeneity of the spatial distribution of the electron inside the sample. For the orthogonal, unitary, and
symplectic two-dimensional disordered models, we investigate numerically the system-size dependence of
these parameters in the diffusive and localized regimes. Obtained size and disorder dependence of K11 and �
is in agreement with single parameter transport theory. In the localized regime, �→0 independently of the
physical symmetry of the model. In the diffusive regime, � equals to the symmetry parameter �. For the
symplectic model we analyze the size dependence of � in the critical region of the metal-insulator transition
and found the nonuniversal critical value �c.
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I. INTRODUCTION

Transport of electrons through disordered structures offers
a broad variety of interesting universal phenomena.1,2 With
increase in the strength of the disorder the character of the
transport changes from the ballistic to diffusive up to the
insulating, where all electrons are localized.3

In the limit of weak disorder �diffusive regime� the trans-
port can be studied analytically using, for instance, the Dor-
okhov Mello Pereyra Kumar �DMPK� equation,4 the
Green’s-function analysis,5 or random matrix theory.6,7 The
existence of the metal-insulator transition in two-
dimensional �2D� and three-dimensional �3D� models8,9 is a
strong motivation to construct an analytical theory of the
transport beyond the diffusive regime.10,11 Also, numerical
data for the localized regime12–16 show that, contrary to the-
oretical expectation, the distribution of the logarithm of the
conductance is never Gaussian for disordered systems in
higher dimension. Therefore, a general transport theory must
explain how the dimension of the system and physical sym-
metry of the model9 influence the ability of electron to move
through the sample.

The most elaborated analytical description of the transport
in strongly disordered structures is based on the generalized
DMPK equation �GDMPKE�.17 The theory takes into ac-
count that the spatial distribution of electrons in the regime
of localization is not homogeneous. The last was confirmed
by numerical simulations in Refs. 14 and 18. In GDMPK, the
nonhomogeneity of electron distribution is measured by a
large number of parameters Kab �defined later�; however,
only two of them, K11 and �=2K12 /K11 are decisive for the
transport.19

The GDMPKE is not exactly solvable, but approximate
analytical solution for 3D disordered systems19–21 agrees
very well with numerical data. Numerical solution of GD-
MPKE �Ref. 22� confirmed that it correctly describes disor-
dered orthogonal systems and that parameters Kab depend on
the dimension of the system.

Detailed numerical analysis of parameters K11 and � in
three-dimensional model was performed in Ref. 20. The aim
of this paper is to investigate how these parameters depend

on the physical symmetry in 2D models. We present numeri-
cal data for the parameters K11 and � for the orthogonal �O�
model, unitary �U� and two symplectic �S� �Refs. 23 and 24�
models in diffusive and insulating regimes. For the S models,
we also study the behavior of both parameters in the critical
regime of the metal-insulator transition.

II. GENERALIZED DMPK EQUATION

Consider a disordered system of the length Lz connected
to two semi-infinite ideal leads with N open channels. Trans-
mission parameters are given by the transfer matrix, which
can be written in general form as4

T = �u 0

0 u�
���1 + � ��

�� �1 + �
��v 0

0 v�
� . �1�

In Eq. �1�, u and v are N�N matrices and � is a diagonal
matrix with positive elements �a ,a=1,2 , . . . ,N. In systems
with time-reversal symmetry, matrices u� and v� can be rep-
resented in terms of u and v.25 For the orthogonal system,
u�=u� and v�=v�. For the symplectic symmetry, the scatter-
ing depends on the spin of the electron; the elements of ma-
trices u and v are 2�2 matrices which fulfill the symmetry
relations6,25

u� = ku�kT, v� = kv�kT, k = �0 − 1

1 0
� . �2�

Statistical variables u, v, and � contain entire information
about the transport. In the weak-disorder limit,4 the conduc-
tance g �in units of 2e2 /h� is completely determined by ei-
genvalues �a.6,26

g = �
a=1

N
1

1 + �a
= �

a=1

N
1

cosh2 xa/2
. �3�

In the last equation, we used the parametrization �a
= �cosh xa−1� /2.

The probability distribution of �’s can be found as a so-
lution of the DMPK equation.4 The generalization of the
DMPK for the orthogonal symmetry class was done by Mut-
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talib and Klauder17 who introduced new parameters, Kab
which characterize the spatial distribution of the electron in
the disordered sample. The generalized DMPK equation
reads17

�pLz
���

��Lz/��
=

1

J
�

a

N
�

��a
��a�1 + �a�KaaJ

�p

��a
� , �4�

where � is the mean free path, and

J 	 

a�b

N

��a − �b��ab, �ab 	
2Kab

Kaa
. �5�

This equation can be simplified when all Kaa are approxi-
mated by K11 and �ab�� for all a, b �a�b�. This approxi-
mation was confirmed by numerical work.20,22

Although the conductance is still given by Eq. �3�, it be-
comes implicitly a function of the spatial distribution of the
electron.

III. MODELS

In numerical work, disordered sample is represented by
2D square disordered lattice of the size L�L. The orthogo-
nal 2D model with on-site disorder is defined by the Hamil-
tonian

H = W�xz
�xzcxz

† cxz + V��xz
cx+a,z

† cxz + cxz
† cx+a,z

+ V
�xz
cx,z+a

† cxz + cxz
† cx,z+a. �6�

Here, a is the lattice spacing, �xz are random energies from
the box distribution, ��xz��1 /2, W measures the strength of
the disorder, and V
 	1 defines the energy scale. To avoid
closed channels in leads, we use V� /V
 = t�1.27 In what fol-
lows we consider t=0.9, the energy of the electron E=0.01.
With a	1, we identify the number of channels

N 	 L . �7�

It is generally accepted2,8 that only localized regime exists
in the model when the size of the system L→	 �the critical
disorder Wc=0�. Nevertheless, diffusive transport is observ-
able for sufficiently weak disorder and small sample size.13

The second model of interest is the symplectic model with
spin-dependent hopping. Here, the hopping of electron from
one site to the neighboring one can be accompanied by the
change in the sign of the spin and V
 and V� become 2�2
matrices. In numerical simulations, we study the Ando model
with hopping terms

V� = t�V1 − V2

V2 V1
�, V
 = �V1 − iV2

− iV2 V1
� . �8�

The spin-orbit coupling is characterized by the parameters
S=V1 and V1

2+V2
2=1. In this paper, S=0.5. We also study the

Evangelou-Ziman �EZ� model23 which uses the random hop-
ping matrices V: with help of three independent random vari-
ables, tx , ty , tz, distributed uniformly in interval
�−
 /2,
 /2�

V� = Vxz,x+az = t�1 + itz − ty + itx

ty − itx 1 − itz � �9�

and

V
 = Vxzxz+a = �1 + itz − ty + itx

ty − itx 1 − itz � , �10�

and consider 
=1.
Both Ando and EZ models exhibit the metal-insulator

transition when the disorder W reaches the critical value
Wc.

23,24 Owing to the anisotropy of our models, the critical
disorder differs from that obtained in previous works.23,28 We
found Wc�5.525 for the Ando model and Wc=6.375 for the
EZ model.

The 2D model with external magnetic field B can be ob-
tained by including the Peierls hopping term V�= t exp ix�,
�= �e /��Ba2 into Hamiltonian �6�.

IV. MATRIX K

The matrix Kab is defined in terms of higher moments of
the matrices v

Kab 	 �kab� . �11�

Here, �¯ � represents an ensemble average.
For the orthogonal system, the matrix kab

O is defined as17

kab
O = �

�=1

L

�v�a�2�v�b�2. �12�

In the diffusive regime,4

Kab
O =

1 + 
ab

L + 1
. �13�

For the unitary models,

kab
U = �

�=1

L

�v�a�2�v�b� �2 �14�

and

Kab
U =

1

L
. �15�

For the systems with symplectic symmetry the matrix kab
S is

given29,30

kab
S = �

�=1

L

v�a
† v�b

� v̄�bv�a
. �16�

In this equation, the 2�2 matrices v†, v�, and v̄ are defined
in terms of the matrix v

v = �v11 v12

v21 v22
�, v† = �v11

� v21
�

v12
� v22

� � �17�

and
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v� = �v11
� v12

�

v21
� v22

� �, v̄ = � v22 − v12

− v21 v11
� . �18�

In the diffusive regime, Kab
S is degenerated diagonal matrix29

with diagonal elements

Kab
S =

2 − 
ab

2L − 1
. �19�

Our numerical results discussed in Sec. V confirm that the
same holds for any disorder strength.

From Eqs. �13�, �15�, and �19� it follows that

�
b

Kab
O = �

b

Kab
U = �

b

Kab
S = 1. �20�

We use these relations to test the numerical accuracy of our
results.

V. RESULTS

We consider square samples of the size L�L attached to
two semi-infinite ideal leads. The size L increases from L
=10 to L=256 �S model� up to L=600 �O model�. For each
value of L and W, we analyze the statistical ensemble of
typically Nstat�104 samples �Nstat�1000–4000 for the larg-
est system size�. In numerical calculation, the sample and
leads are represented by the 2N�2N transfer matrices M and
M0, respectively.31 Following,32 the conductance is given as
a trace of matrices L+MR+ and L−MR−, where R+− �L+−� are
N�2N �2N�N� matrices composed of right and left eigen-
values of M0, respectively. The upper index + � −� indicates
the direction of the propagation through the sample. Com-
paring with Eq. �1� we find

L+MR+ = v�1 + ��−1v† �21�

and

L−MR− = v�†�1 + ��−1v�. �22�

Thus, eigenvalues �a can be obtained numerically by diago-
nalizing of the matrices L+MR+ and L−MR−. Matrices v and

v� consist of corresponding eigenvectors. Details of numeri-
cal method are given in Ref. 20. Mean values, K11 and K12
were calculated as an average over the statistical ensemble

Kab =
1

Nstat
�
i=1

Nstat

kab
�i� . �23�

Obtained data for kab were also used for the calculation of
probability distributions.

As noted in Sec. IV, Kab
S are 2�2 matrices. Numerical

data confirm that, with the relative accuracy of 10−3, these
matrices remain diagonal degenerate for each value of the
disorder and all size of the system.

A. Diffusive regime

We first verify the prediction of the DMPK equation for
the diffusive regime. In Fig. 1 we show the L dependence of
parameters K11 and K12 for the orthogonal and symplectic
systems with disorder W=2. The system is in the diffusive
regime �the conductance g varies between 4.9 and 5.03 for
the orthogonal model, and increases from 7 to 11 for the S
model�. Linear fits shown by solid lines confirm that both
K11 and K12�1 /L and � equals to the symmetry parameter �
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FIG. 1. �Color online� K11 and K12 as a function of the system
size for square lattice L�L for the S, O, and U systems. The dis-
order W=2. Solid lines are linear fits with slopes given in the
legend.
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value, however, is too small to be observable numerically for weak
disorder within the considered size of the system. K12 decreases to
zero for any value of the disorder W.
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in the diffusive regime. The spatial distribution of electrons
is homogeneous and no additional parameter must be intro-
duced into the model. The transport is universal, the only
model parameter in the DMPK is the ratio Lz /� of the system
length to the mean free path. Although the DMPK was de-
rived only for the quasi-one-dimensional systems, our data
show that relations in Eqs. �13�, �15�, and �19� are valid also
for the square samples.

B. Insulating regime

In the limit of strong disorder, we expect that Kaa depend
on the index a and Kaa�O�1�. Contrary, off-diagonal ele-
ments Kab, a�b, should decrease to zero, Kab�1 /L �a
�b� so that ��1 /L decreases to zero when the size of the
system increases.17

Figure 2 shows the L dependence of K11
O and K12

O for or-
thogonal systems with various strength of the disorder. Simi-
larly to the 3D orthogonal model discussed in Ref. 20, both
K11

O and K12
O are linear functions of 1 / �L+1�, Since no me-

tallic regime exists for the nonzero disorder, we expect that
K11

O converges to the nonzero value in the limit of L→	 for
all values of W

K11
O = K11

O	 +
c

L + 1
. �24�

The limiting value K11
O	 can be easily calculated numerically

for strong disorder. This is more difficult for weak disorder
�W�4�, since K11

O	 becomes smaller than the inverse of the
accessible sample size.

Similar data �not shown� were obtained also for the sym-
plectic models.

C. Critical regime (symplectic models)

Critical regime exists only for the S systems. In the criti-
cal regime, W=Wc we found that both K11

S and K12
S decrease

at the critical point to zero

K11
S �W = Wc�, K12

S �W = Wc� �
1

L
�25�

�Fig. 3� so that �S reaches a critical value, �c
S=2K12

S /K11
S

which does not depend on the size of the system

�c
S = const. �26�

As shown in Fig. 3, the critical value �c
S is not universal but

depend on the model. We obtain �S=2.601 for the Ando
model, and 1.795 for the Evangelou-Ziman model.

Figure 4 shows that the length and disorder dependence of
parameter �S can be, at least, in principle, used for the esti-
mation of critical parameters in the same way as mean con-
ductance of the smallest Lyapunov exponent. For very weak
disorder, we find that �S only weakly depends on the size of
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the system and increases to the metallic limit �=4 when L
increases to infinity, indicating that the system is in the me-
tallic regime. For stronger disorder, �S�1 /L decreases to
zero when the size of the system increases, in agreement
with the prediction of the theory.17 We found the critical
regime between these to limits, where �S converges to the
size-independent constant �c

S�2.60 �obtained already in Fig.
3� when W=Wc.

For comparison, we show in Fig. 5 data for �O calculated
for the 2D orthogonal model. We found no critical regime.
Although �O�1 for weak disorder, we expect that this is the
finite-size effect, and �O will decrease to zero for each dis-
order strength when L increases.8

D. Universality

With two new parameters K11 and �, we must verify if the
transport properties of the system are still maintained by only
a single parameter.8 In the metallic regime, the answer is
trivial since the entire matrix K reduces to model-
independent numbers given by Eqs. �13�, �15�, and �19�. The
universality of the critical regime was shown in the previous
section. Here, we concentrate on the localized regime, where
we expect that K11 becomes an unambiguous function of the
localization length.20 The last can be estimated from the
smallest parameter x1,

� =
2L

x1
. �27�

In Fig. 6 we plot K11 as a function of � for the orthogonal and
symplectic Ando models. Data confirm that the parameter
K11 becomes a linear function of ln � with increasing system
size and converge to the system-size-independent limit when
L→	.

Two insets of Fig. 6 show that the parameter � is an
unambiguous function of x1 in all three regimes. In the lo-
calized regime, when x1�L, data confirm that ��1 /L, con-
sistent with prediction of the Muttalib’s theory.

E. Statistical properties of k11

In the previous analysis we dealt only with mean values
of K11 and K12. Since both k11 and k12 are statistical vari-
ables, we must also to study their statistical properties. Fig-
ure 7 shows the probability distribution of parameters k11 and
ln k11 for the 2D orthogonal model. For each disorder, the
mean value can be identified with the most probable value.
In the localized limit, both K11 and Var k11 are of order of
unity, and the distribution P�k11� becomes size independent
�Fig. 8�.

���
��

��

��

�

�
�

��
��
�
����
���
�

����
����

��

�
�

��

�
�

��
��
��
����
��

��
��

��

��
��

��

��
����
��

�

�
�

��
����
����
��
���
���
����
����
��

��
���

�

��
��

�
�

��
��

��
��
��
��

1 10 100 1000
2L/x

1

0

0.1

0.2

0.3

K
11

�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�������������������
��
��
�
�
����
�
���
��
��
�
�
��
��
��
�
�

�
�

�
�
��
��
��
�
�

�
�

�

�
��
�
�
��
�
�
�

��

�
�
�
�
�
��
�

��
��

��
��
��
��

��
��

�
�

��
��

�

�
�
��
�
��
��

��

��

��
��

�
�

��
��

��
�
��

�

1 10 100
x

1

0.1

1

γ

O

O

��
�������

����
������
�
��
��

��

�

�
�

�
��
��
�

��
��

�
�

�
�

��
�����

�
��
��
��
�����
��

��
��

��
��

��

��
��
��
��
�
�

��
��

�
�

�
�

��
�������

��
��
��
��
��
��
��

��
��

��
��
��
��

��

��
��

��
��

��
��

�
�
��
��
��
��
��
��
��
����

�
�

��
��

��
��

��
��

10
0

10
1

10
2

10
3

2L/x
1

0

0.05

0.1

0.15

0.2

K
11

L = 20��
��

L = 40��

L = 100
��
��

L = 200��
��

�������� ���������
��
����������
��
��
��
�����
���
�
��
��
��
��
��
��
������
�
�
�

��
��
��
��
��
��
��
����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
����
��
��
��
��
�
�
��
���
��
��

��
��

��

��
��
��

��
��

��
��

��

��
��

�
�

��
��

��
��

��
��

��
��

��

��
��

��

��
��

�
�

��
��

10
-2

10
-1

10
0

10
1

10
2

x
1

0.1

1

γ
S

S

FIG. 6. �Color online� K11 as a function of the localization
length � �estimated as �=2L /x1� for the 2D orthogonal model �top�
and the 2D symplectic model �bottom�. The strength of the disorder
varies between W=1 and W=16 in both figures. For strong disorder
�2L /x1→0� data converge to the universal curve �solid line is a
function 0.288−0.066 ln � for the orthogonal model�. Insets in both
panels show that � is an unambiguous function of x1.

0 0.1 0.2 0.3 0.4 0.5
k

11

1

10

100

P
(k

11
)

-5 -4 -3 -2 -1
ln k

11

0

1

2

3

P
(l

n
k 11

) 2

3
4 6 14

2

3

4

6
8

10

14

FIG. 7. �Color online� The probability distribution of k11 for the
2D orthogonal model with various disorder strength �given in the
figure�. The size of the system L=200. Inset shows the distributions
P�ln K11�. Data confirm that k11 is a good statistical variable with a
well-defined mean value and variance.

��
��

��
��

�
�

�
�

�
�

�

��
��

��
��
��
��

��
��

��
��

��

��
��

��
��

��
��
��
��

�
�

��
��
�
��
��

��
��

��
��

��
��
��

0 0.2 0.4
k

11

0.1

1

10

P(
k 11

)

W = 9 L = 100 K
11

= 0.079

W = 9 L = 200 K
11

= 0.739
��
��

W = 16 L = 100 K
11

= 0.184

W = 16 L = 200 K
11

= 0.178��

FIG. 8. �Color online� The probability distribution of k11 in the
strongly localized regime for the Ando model. The mean value K11

is given in the legend.

TWO-DIMENSIONAL ELECTRON SYSTEMS BEYOND THE… PHYSICAL REVIEW B 82, 094203 �2010�

094203-5



In Fig. 9 we plot the probability distribution of k11 for the
symplectic Ando model in the critical and metallic regimes.
We demonstrate that the distributions for the square sample
L�L with quasi-one-dimensional systems are almost identi-
cal.

F. Correlation g vs k11

We have shown that K11→0 in the metallic regime but
K11�O�1� in the insulator. Small values of K11 indicate that
the mean conductance of the system is large. Contrary, large
values of K11 correspond to systems with small mean con-
ductance. This is in agreement with our expectation: small
conductance means that the electron has problems to go
through the sample. When it finally reaches the opposite
side, its spatial distribution is not homogeneous any more.

However, the correspondence large k11-small g holds only
for mean values of these parameters. As shown in Fig. 10,
the values of g and k11 for a given sample are not correlated
within a given statistical ensemble: small values g� �g� can
be accompanied with any value of k11—either small k11
�K11 or large k11�K11. The absence of the correlation, ob-
served in both the metallic and in strongly localized regime,
confirms that the statistical fluctuations of k11 do not affect
the mean value of the conductance.

VI. CONCLUSION

The electron transport through disordered system is deter-
mined by spatial distribution of the electron inside the disor-
dered sample, which can be measured by parameters K11 and
�. Our aim in this paper was to investigate how these two
parameters depend on the size of the system, strength of the
disorder and physical symmetry of the model. We concen-
trated on 2D disordered systems. In order to better under-
stand the role of the disorder, we compare numerical data for
the orthogonal and symplectic physical symmetry. For com-
pleteness, we add also a few data for the unitary ensemble.

In the diffusive regime, the size dependence of both pa-
rameters follows the analytical relations given by the theory

of DMPK equation. In particular, � equals to the symmetry
parameter �. In the localized regime, K11 converges to the
size-independent limit and ��1 /L.

For the symplectic models, which exhibit the metal-
insulator transition, we analyze the size dependence of both
parameters and we found that � possesses a critical value �c
when disorder W=Wc. Also, we found no significant differ-
ence between the values of K for the two-dimensional and
quasi-one-dimensional systems. No critical value was found
for the orthogonal model.

We also found that K11 is an unambiguous function of the
localization length � and � is uniquely given by the param-
eter x1. Therefore, the use of these parameters does not con-
tradict the single-parameter scaling theory.

Since the elements of matrices k are given by elements of
statistical matrices v, they are also statistical variables. For-
tunately, analysis of their probability distributions confirm
that their mean values are good representatives of the statis-
tical ensembles. We found no statistical correlations between
the conductance and k11. Therefore, we conclude that mean
values, K11 and K12, and, consequently, �=2K12 /K11, are
physical parameters for the description of disordered sys-
tems.
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